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Quantum channel capacity is a fundamental quantity in order to understand how good can quan-
tum information be transmitted or corrected when subjected to noise. However, it is generally not
known how to compute such quantities, since the quantum channel coherent information is not ad-
ditive for all channels, implying that it must be maximized over an unbounded number of channel
uses. This leads to the phenomenon known as superadditivity, which refers to the fact that the
regularized coherent information of 𝑛 channel uses exceeds one-shot coherent information. In this
article, we study how the gain in quantum capacity of qudit depolarizing channels relates to the
dimension of the systems considered. We make use of an argument based on the no-cloning bound
in order to proof that the possible superadditive effects decrease as a function of the dimension for
such family of channels. In addition, we prove that the capacity of the qudit depolarizing channel
coincides with the coherent information when 𝑑 → ∞. We also discuss the private classical capacity
and obain similar results. We conclude that when high dimensional qudits experiencing depolariz-
ing noise are considered, the coherent information of the channel is not only an achievable rate but
essentially the maximum possible rate for any quantum block code.

I. INTRODUCTION

Classical communications were revolutionized when
Claude Shannon introduced the noisy-channel coding
theorem in his groundbreaking work A Mathematical
Theory of Communication [1]. In such theorem, Shan-
non introduced the concept of channel capacity, which
refers to the maximum coding rate for which asymptoti-
cally error-free communications are possible over a noisy
channel. The consequences to this result are momentous
since it establishes the limit, in terms of rate, for which
error correction makes sense and, thus, the target that
coding theorists should seek when designing their codes.
The computation of such quantity results to be simple
due to the fact that the classical mutual information is
additive, implying that the regularization over 𝑛 channel
uses needed to compute the capacity of the channel re-
sults in a single-letter formula, i.e. in the optimization of
such quantity over a single use of the channel [1].

The development of quantum information theory fol-
lowed the steps of Shannon, introducing the concept of
quantum channel capacity similarly to its classical coun-
terpart, i.e. the maximum quantum coding rate for co-
munication/correction (note that in the quantum setting
the noise can arise from temporal evolution) with error
rates vanishing asymptotically when quantum informa-
tion is subjected to noise. In general, the computation
of the quantum channel capacity, 𝐶Q, is based on the
following regularization [2–6]:

𝐶Q (N) = lim
𝑛→∞

1

𝑛
𝑄coh (N⊗𝑛), (1)

∗ Corresponding author: jetxezarreta@tecnun.es

where N denotes the quantum channel and 𝑄coh refers
to the channel coherent information defined as

𝑄coh (N) = max
𝜌

𝐼coh (N , 𝜌)

= max
𝜌

𝑆(N (𝜌)) − 𝑆(N 𝑐 (𝜌)),
(2)

with 𝐼coh (N , 𝜌) the channel coherent information when
state 𝜌 is the input, 𝑆 the von Neumann entropy and N 𝑐

is a complementary channel to the environment.
However, in stark contrast to its classical counterpart,

the channel coherent information has been proven not
to be additive in general [6–10], implying that the reg-
ularization in equation (1) involves optimizing over an
infinite parameter space. Given two arbitrary quantum
channels N1, N2, the most one can say about the coher-
ent channel information of the parallel channel N1 ⊗ N2

is 𝑄coh (N1 ⊗ N2) ≥ 𝑄coh (N1) + 𝑄coh (N2). When strict
inequality holds, the channels are said to exhibit su-
peraditivity, otherwise are said to have additive coherent
information [11]. Explicit examples of superadditivity
have been found for several classes of quantum chan-
nels [6–19]. Importantly, the non-additivity effects of
quantum capacity arise as a result of entanglement in
the input state of the channel since state coherent in-
formation is additive for unentangled input states, i.e.
𝐼coh (N⊗2, 𝜌 ⊗ 𝜎) = 𝐼coh (N , 𝜌) + 𝐼coh (N , 𝜎) [10]. This im-
plies that entanglement is a resource that may protect
quantum information from noise in a more efficient way
than what it is classically possible.
Therefore, an important question to be answered is

what types of channels have additive channel coherent
information so that their capacity reduces to single-letter
expressions, i.e., 𝐶Q (N) = max𝜌 𝐼coh (N , 𝜌). At the time
of writing, quantum channels with additive channel co-
herent information belong to the classes of degradable
[6, 20–22, 25], conjugate degradable [22, 23] and less noisy
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than the environment [22] channels. The quantum ca-
pacities of antidegradable, conjugate antidegradable and
entanglement-binding channels are also single-letter char-
acterized, but they are equal to zero [6, 10, 22, 24, 25].
Recently, examples of quantum channels (the platypus,
multi-level amplitude damping and resonant multi-level
amplitude damping channels), showing additivity while
not being degradable have been found [26–28].

The depolarizing channel is a widely used quantum
channel model in order to describe the noise that quan-
tum information experiences [29]. This channel is charac-
terized by the depolarizing probability, 𝑝, and its quan-
tum channel capacity is still unknown even if it is the sim-
plest and most symmetric nonunitary quantum channel.
In general, 𝑑-dimensional depolarizing channels (those
acting on 𝑑-dimensional quantum states referred as qu-
dits) are antidegradable for 𝑝 ≥ 𝑑

2(𝑑+1) , while they do

not belong to any of the classes of channels previously
mentioned for 𝑝 < 𝑑

2(𝑑+1) [30]. Several upper bounds

on the quantum capacity of 𝑑-dimensional depolarizing
channels for the non-trivial parameter region have been
derived [31–36]. However, the quantum capacity of the
family of 𝑑-dimensional depolarizing channels remains a
mistery for such region.

In this article, we study how the potential superaddi-
tivity effects of the quantum channel capacity, in qudits
per channel use units, relate to the dimension of the depo-
larizing channel. Specifically, we want to observe which
is the extra coding rate achievable due to superadditivity
when logical qudits are encoded by physical qudits. We
provide an argument based on the no-cloning bound in
order to study how the quantum capacity gain (defined
as the difference between the quantum capacity and the
channel coherent information) caused by potential coher-
ent information superadditivity relates to the dimension
of the depolarizing channel. We conclude that such pos-
sible capacity gain is a monotonically decreasing function
with the dimension and, thus, that the superadditive ef-
fects are less and less important when the dimension of
the depolarizing channels increases. In addition, we de-
termine that for the extremal case in which the dimension
of the system is let to grow indefinitely (in the limit where
the qudit becomes a quantum oscillator, i.e., a bosonic
mode [37]), the depolarizing channel capacity coincides
with the channel coherent information. We also relate
the obtained results with the private capacity of qudit
depolarizing channels concluding that such information
theoretic quantity behaves in a similar way as the qua-
tum channel capacity.

II. QUDIT DEPOLARIZING CHANNELS

The 𝑑-dimensional or qudit depolarzing channel, Λ𝑑
𝑝 :

H𝑑 → H𝑑, is the completely-positive, trace preserving
(CPTP) map defined as [31, 36, 38–40]

Λ𝑑
𝑝 (𝜌) = (1 − 𝑝)𝜌 + 𝑝Tr(𝜌) 𝐼𝑑

𝑑
, (3)

where the density matrices 𝜌 are the so-called qudits or
quantum states operating over a 𝑑-dimensional Hilbert
space H𝑑, 𝐼𝑑/𝑑 refers to the maximally mixed state of
dimension 𝑑 and 𝑝 ∈ [0, 1] refers to the depolarizing
probability. Consequently, the operation of the qudit
depolarizing channel leaves the state uncorrupted with
probability 1 − 𝑝 while transforming it to the maximally
mixed state with probability 𝑝.

The depolarizing channel has a central role in model-
ing quantum noise in the theory of quantum information
[29]. Importantly, depolarizing channels can be efficiently
simulated as an stochastic noise map by classical means
since they fulfill the Gottesman-Knill theorem [29, 41].
This implies that, for example, the performance of quan-
tum error correction codes, key for fault-tolerant quan-
tum computing and communications, can be effectively
assesed by traditional methods. Furthermore, Clifford
twirling an arbitrary 𝑑-dimensional CPTP noise map re-
sults in a qudit depolarizing channel [29, 42]. Twirling
is extensively used in quantum information theory for
studying the average effects of a general noise map by
mapping them to more symmetric versions of themselves
[29, 30, 43–45]. The twirled channel is obtained by aver-
aging the action of the map over a set of unitaries. More-
over, the following lemma [43] implies that error correc-
tion codes for arbitrary noise maps can be designed by
constructing them to correct a twirled map.

Lemma 1. Any correctable code for the twirled channel
N̄ is a correctable code for the original channel N up to
an additional unitary correction.

Hence, the depolarizing channel is not only interesting
because of its nice properties, but also as error correction
codes can be designed by using it. The depolarizing pa-
rameter and the parameters of the original channel are re-
lated in a specific way as a result of the twirl (see [29, 46]
for specific details on the qubit case). Notably, twirling
channels into Pauli channels, whose symmetric version is
the depolarizing channel, has recently been used for the
quantum error mitigation technique named Probabilisitc
Error Cancellation (PEC) [47].

Consequently, studying the achievable rates for the dif-
ferent quantum information theoretical tasks over depo-
larizing channels is of the outmost importance. Studying
the different capacities of such family of channels is also
interesting from the point of view of quantum informa-
tion theory too since the capacities of twirled channels
lower bound the capacities of the channels from which
they originated [30] and, thus, interesting lower bounds
on the achievable rates of general channels might be ob-
tained.

The channel coherent information, 𝑄coh, defined in
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equation (2), for qudit depolarizing channels is [31]

𝑄coh (Λ𝑑
𝑝) = max {0, log2 𝑑

+
(
1 − 𝑝

𝑑2 − 1

𝑑2

)
log2

(
1 − 𝑝

𝑑2 − 1

𝑑2

)
+𝑝 𝑑

2 − 1

𝑑2
log2

( 𝑝

𝑑2

)}
,

(4)

with units of qubits per channel use. It provides a
lower bound for the quantum channel capacity, 𝐶Q (N) ≥
𝑄coh (N). Note that by changing the log2 in the above
expression by log𝑑, the units of 𝑄coh (Λ𝑑

𝑝) are qudits per
channel use. The reason to consider this units is that we
are interested in studying the logical qudits per physical
qudits, i.e. coding rate, that can be achieved for a qudit
error correction scheme, and not the amount of logical
qubits that can be encoded by means of qudits. For the
sake of notation we will denote the channel coherent in-
formation in such units by 𝑄𝑑

coh
(Λ𝑑

𝑝).
Recall that for 𝑝 < 𝑑

2(𝑑+1) the channel does not belong

to any of the classes with proven additive channel coher-
ent information [21], implying that the quantum channel
capacity is not known and may exhibit superadditivity
gains. In fact, these gains have been obtained in previ-
ous works [6–8, 18]. Several techniques have been devel-
oped in order to obtain upper bounds for the quantum
channel capacity of 𝑑-dimensional depolarizing channels
[31–35]. Each of those upper bounds are tighter depend-
ing on the region of depolarizing probability considered

in 𝑝 ∈
[
0, 𝑑

2(𝑑+1)

]
. The tightest upper bound is usually

obtained by using the fact that the convex hull of the
upper bounds is itself an upper bound [32]. However, for
the purposes of this work, we will consider the so called
no-cloning bound, 𝑄nc. The no-cloning bound on quan-
tum capacity is based on combining Cerf’s no-cloning
bounds [49] and the degradable extension technique of
[36]. Cerf’s results lay on the no-cloning theorem1 of
quantum mechanics for determining that Pauli channels
(depolarizing channels are an specific instance of this)
cannot have a positive capacity under certain conditions.
By using this result, the bound can be obtained by the
techniques in [36]. A proof for this can be found in [30].
The no-cloning bound upper bounds the quantum chan-
nel capacity of qudit depolarizing channels as [30, 32, 48–
50]

𝐶Q (Λ𝑑
𝑝) ≤ 𝑄nc (Λ𝑑

𝑝) =
(
1 − 2𝑝

𝑑 + 1

𝑑

)
log2 𝑑, (5)

with units of qubits per channel use. Note that the ex-
presion of 𝑄nc (Λ𝑑

𝑝) in qudits per channel use reduces to

𝑄𝑑
nc (Λ𝑑

𝑝) =
(
1 − 2𝑝

𝑑 + 1

𝑑

)
. (6)

1 A unitary operator that perfectly copies arbitrary quantum
states cannot be constructed.

III. SUPERADDITIVITY GAIN

As explained in the previous section, the potential su-
peradditive nature of the coherent information may lead
to quantum channel capacities that are higher than the
one-shot channel coherent information. In other words,
there exists a gain in quantum channel capacity if several
quantum channel uses are considered. Remarkably, it has
been proven that even an unbounded number of channels
uses may be required for this effect to happen [10]. In
order to quantify this gain we define the superadditivity
gain, 𝜉, as

𝜉 (N) = 𝐶Q (N) −𝑄coh (N), (7)

which gives the additional qubits per channel that the
channel capacity has when compared the achievable rate
of the channel coherent information. Clearly, if the
coherent information of the channel is additive, then
𝜉 (N) = 0. Knowledge about the quantum channel ca-
pacity is needed in order to compute the superadditivity
gain in equation (7) and, as stated before, the quantum
capacity of qudit depolarizing channels is still unknown.
However, upper bounds on such quantity can be obtained
using the upper bounds derived in [31–36]. For the pur-
poses of this work we will upper bound the superadditiv-
ity gain by using the no-cloning bound as

𝜉nc (Λ𝑑
𝑝) = 𝑄nc (Λ𝑑

𝑝) −𝑄coh(Λ𝑑
𝑝) ≥ 𝜉 (Λ𝑑

𝑝). (8)

The units in the above expression are qubits per chan-
nel use. However, we will study the capacity gain with
qudits per channel use units in order to have a fair com-
parison of the extra capacity that is obtained via super-
additive effects. In this way, we will be able to see how
many more qudits per channel use can be potentially ob-
tained due to superadditive effects, which is more fair to
compare those effects for different dimensions, since op-
erating in more dimensions trivially implies that more
information (in terms of qubits) can be encoded in a
single quantum state. For example, consider 𝑑1 < 𝑑2
and assume that their superadditivity gains in qudits
per channel use (coding rate) for both cases is the same.

That is, 𝜉 (Λ𝑑1
𝑝 ) = 𝜉 (Λ𝑑2

𝑝 ) = 𝑔. However, these gains be-
come 𝑔 log2 (𝑑1) < 𝑔 log2 (𝑑2) when expressed in qubits
per channel use, making the impression that the capacity
of for 𝑑2 increases more. Note that whenever qudit error
correction codes are constructed, their coding rate will
have logical qudits per physical qudits units, implying
that the extra rate obtained via superadditivity should
be quantified in such terms.

Therefore, in what follows, the units of the superaddi-
tive gains will be given in qudits per channel use, that
is

𝜉nc (Λ𝑑
𝑝) = 𝑄𝑑

nc (Λ𝑑
𝑝) −𝑄𝑑

coh (Λ
𝑑
𝑝) ≥ 𝜉 (Λ𝑑

𝑝). (9)
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IV. SUPERADDITIVITY EFFECTS OF
QUANTUM CAPACITY DECREASE AS A

FUNCTION OF THE DIMENSION

We now provide the main result of this article.

Theorem 1. Let 𝑑𝑙 be an arbitrary positive integer

higher than 2 and 𝑝
𝑑𝑙
0 ∈ R defined as

𝑝
𝑑𝑙
0 = min

𝑝

({
𝑝 ∈

(
0,

𝑑𝑙

2(𝑑𝑙 + 1)

)
: 𝑄𝑑𝑙

coh
(Λ𝑑𝑙

𝑝 ) = 0

})
. (10)

That is, 𝑝
𝑑𝑙
0 is the smallest depolarizing probability that

makes the coherent information of the 𝑑𝑙-dimensional de-
polarizing channel equal to zero. Then, for any depolar-

izing probability 𝑝 in the range 𝑝 ∈ (0, 𝑝𝑑𝑙0 ), the super-

additivity gain, 𝜉nc (Λ𝑑
𝑝), in qudits per channel use units

is a monotonically decreasing function of the channel di-
mension, 𝑑, for 𝑑 ≥ 𝑑𝑙.

Proof. To prove the theorem, we must prove that

𝜕𝜉nc (Λ𝑑
𝑝)

𝜕𝑑
< 0, ∀𝑝 ∈

(
0, 𝑝𝑑𝑙0

)
. (11)

Thus, the derivative of 𝜉nc (Λ𝑑
𝑝) over the dimension in the

range 𝑝 ∈
(
0, 𝑝𝑑𝑙0

)
𝜕𝜉nc (Λ𝑑

𝑝)
𝜕𝑑

= −1 − 4
𝑝

𝑑
+ 4𝑝

(𝑑2 − 1)
𝑑3

− 𝑝

(𝑑2 − 1) log2
(

𝑝

𝑑2

)
𝑑2 log2 𝑑

−
(1 − 𝑝 𝑑2−1

𝑑2 ) log2
(
1 − 𝑝 𝑑2−1

𝑑2

)
log2 (𝑑)

= −4 𝑝
𝑑
+ 4𝑝

(𝑑2 − 1)
𝑑3

−𝑄𝑑
coh (Λ

𝑑
𝑝) < 0.

(12)

The last inequality follows from the fact that 4 𝑝

𝑑
>

4𝑝 (𝑑2−1)
𝑑3 ,∀𝑑 (this inequality reduces to 1

𝑑
> 1

𝑑
− 1 which

is true for all 𝑑 > 0), and the fact that ∀𝑑 ≥ 𝑑𝑙,
𝑄𝑑

coh
(Λ𝑑

𝑝) ≥ 0, since 𝑝𝑑0 increases with 𝑑 and we are con-

sidering the range 𝑝 ∈
(
0, 𝑝𝑑𝑙0

)
.

Figure 1 graphically shows the results of this theorem.
It plots the no-cloning superadditivity gain versus depo-
larizing probability, 𝑝, for four different 𝑑𝑙 dimensions.
For a given 𝑑𝑙, the vertical dashed lines give the value of

the corresponding 𝑝
𝑑𝑙
0 .

Note the result of Theorem 1 states that for an initial
dimension 𝑑𝑙, the no-cloning superadditive gain, 𝜉nc (Λ𝑑

𝑝)
is a decreasing function with respect to the dimension

𝑑 ≥ 𝑑𝑙 in the depolarizing probability range 𝑝 ∈ (0, 𝑝𝑑𝑙0 ).
It is noteworthy that the result of the theorem can be
extended to a non-tirival region where the coherent in-
formation vanishes. However, since the point of max-
imum potential superadditivity lays in the region con-
sidered, expanding the analysis to such parameter space

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

FIG. 1: No-cloning superadditivity gain as a
function of depolarizing probability 𝑝. Channel

dimensions 𝑑 ∈ {2, 22, 25, 220} are plotted.

would result in similar conclusions. Additionally, the up-

per limit of such range, 𝑝𝑑𝑙0 , increases with respect to the
initial dimension in consideration. This value saturates
to 1/2 when the dimension of the system is left to grow
indefinitely since

lim
𝑑→∞

𝑄𝑑
coh (Λ

𝑑
𝑝) = lim

𝑑→∞

©«1 +
(
1 − 𝑝 𝑑2−1

𝑑2

)
log2

(
1 − 𝑝 𝑑2−1

𝑑2

)
log2 𝑑

+
𝑝 𝑑2−1

𝑑2 log2

(
𝑝

𝑑2

)
log2 𝑑

ª®®¬ = 1 − 2𝑝,

(13)

which vanishes at the value of 1/2.
In this way, by starting with the minimum dimension

of a quantum system, i.e. a qubit 𝑑𝑙 = 2, we can always
find another initial higher dimension for which the no-
cloning superadditive gain decreases in all the range of
depolarizing probabilities 𝑝 ∈ (0, 1/2). For example, see
that in Figure 1 we can change from 𝑑𝑙 = 2 to 𝑑𝑙 = 4

once we reach 𝑝
𝑑𝑙=2
0 , and the gain will still be decreasing

for 𝑑 > 𝑑𝑙 = 4. This can be done each time we reach a
particular 𝑑𝑙. Thus, we effectively prove that whenever
the dimension of the system increases, the room left for
superadditive effects in qudits per channel use units de-
creases. Note also that the region 𝑝 ∈ (0, 1/2) is actually
the only region where superadditivity may happen for ev-
ery 𝑑-dimensional depolarizing channels since for 𝑝 = 0
there is no noise, implying that 𝐶𝑑

Q (Λ𝑑
𝑝) = 1, while for

𝑝 > 1/2 every qudit depolarizing channel is antidegrad-
able since lim𝑑→∞ 𝑑/(2(𝑑 + 1)) = 1/2.
Figure 2 showcases the decrease of the no-cloning su-

peradditive gain for different depolarizing probabilities
𝑝 ∈ {0.01, 0.05, 0.1, 0.2, 0.25} as a function of the dimen-
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sion of the system considered.

102 104 106 108
10-3

10-2

10-1

FIG. 2: No-cloning superadditivity gain as a
function of dimension and depolarizing

probability. We plot the superadditivity gain in terms
of qudits per channel use as a function of the dimension

of the depolarizing channel for
𝑝 ∈ {0.01, 0.05, 0.1, 0.2, 0.25}.

Two important conclusions are derived from Theo-
rem 1, which are clearly appreciated in the above two
figures. The first conclusion is that whenever quantum
systems of high dimensions are corrupted by the oper-
ation of a qudit depolarizing channel, the non-additive
behaviour of the coherent information is less relevant.
That is, the potential superadditivity gain in terms of
qudits per channel use decreases. This is an important
result for the depolarizing channel since it implies that
for very high dimensional systems, the channel coherent
information and the quantum channel capacity will be
close together. Note that tighter bounds than the no-
cloning bound can be used to bound the superadditivity
gain, implying that the actual gain will be much smaller.
This yields to the second conclusion which states that
for high dimensional systems, the capacity of the de-
polarizing channel is close to the single-letter coherent
information of the channel, that is, one can state that
𝐶𝑑
Q (Λ𝑑

𝑝) ≈ 𝑄𝑑
coh

(Λ𝑑
𝑝). Therefore, we can conclude that

for such high dimensional systems, random block codes
on the typical subspace of the optimal input (for the one-
shot coherent information) will essentially achieve quan-
tum channel capacity [6, 51]. This means that the best
strategy to achieve the capacity of a depolarizing chan-
nels with sufficiently large dimension is by randomly se-
lecting a stabilizer code [6].
We have observed that the superadditive behaviour of

coherent information loses importance when the dimen-
sions of the qudit depolarizing channel increase. In par-
ticular, in the limit when 𝑑 is let to be infinite, the qudit
becomes a quantum oscillator or bosonic mode [37], and
the quantum channel capacity of the ∞-dimensional or

bosonic depolarizing channel is given by 1 − 2𝑝, as it is
shown in the following Corollary.

Corollary 1. The quantum channel capacity of the ∞-
dimensional or bosonic depolarizing channel is

𝐶𝑑
Q (Λ∞

𝑝 ) = 𝑄𝑑
coh (Λ

∞
𝑝 ) = 1 − 2𝑝, (14)

with bosonic modes per channel use units for 𝑝 ∈ [0, 1/2]
and 0 for 𝑝 ∈ [1/2, 1].

Proof. We use a sandwich argument to prove the corol-
lary. We know from equation (13) that the coherent in-
formation of the depolarizing channel has the following
asymptotic behaviour in the region 𝑝 ∈ [0, 1/2]

𝐶𝑑
Q (Λ∞

𝑝 ) ≥ 𝑄𝑑
coh (Λ

∞
𝑝 ) = lim

𝑑→∞
𝑄𝑑

coh (Λ
𝑑
𝑝) = 1 − 2𝑝. (15)

In addition, if we study the aymptotic behaviour of the
no-cloning bound in equation (6), then

𝐶𝑑
Q (Λ∞

𝑝 ) ≤ lim
𝑑→∞

(
1 − 2𝑝

𝑑 + 1

𝑑

)
= 1 − 2𝑝, (16)

which completes the sandwich and, thus,

𝐶𝑑
Q (Λ∞

𝑝 ) = 𝑄𝑑
coh (Λ

∞
𝑝 ) = 1 − 2𝑝. (17)

For the complementary region, 𝑝 ∈ [1/2, 1], we know
that this channel is antidegradable. Therefore, the quan-
tum channel capacity vanishes.

Consequently, it can be seen that the superadditive
nature of the coherent information of the qudit depolar-
izing channel is lost when the dimension of the system is
let to grow indefinitely, i.e. 𝜉 (Λ∞

𝑝 ) = 0,∀𝑝. This result
is specially interesting since it is an example of a chan-
nel not belonging to the degradable or conjugate degrad-
able classes (the depolarizing channel does not belong to
these families of channels), but showing channel coher-
ent information with an additive behaviour. Knowledge
about quantum channels presenting additive coherent in-
formation but not belonging to the classes of channels
known to exhibit additivity is important to obtain a bet-
ter understanding about the behaviour of quantum chan-
nel capacity. In this sense, understanding the structure
of particular channels exhibiting additive coherent infor-
mation may provide hints to understand general classes
of channels with such property.
Other implication of Theorem 1 and Corollary 1 is that

whenever the dimension of the qudit depolarizing chan-
nels is big enough, the advantage that utilizing entangled
inputs may provide for protecting quantum information
losses importance. This comes from the fact that the
non-additive effects of coherent information are a result
of considering input states that are entangled2 [10]. Since

2 Note that this does not refer to entanglement-assistance, but to
the fact that the inputs used over sequential uses of the same
channel are entangled among them.
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the channel coherent information of is approximately ad-
ditive for suffficiently high system dimensions, then the
use of entangled input states will provide almost no net
gain. As entanglement is an expensive resource, this sig-
nificantly relaxes the required resources for optimal quan-
tum communication/correction over such channels.

To finish with this section, it is important to discuss
what happens with the superadditive gain whenever it is
considered in qubits per channel use units. As we dis-
cussed, we have considered qudits per channel use units
since we wanted to study the extra rate achievable due
to superadditivity whenever qudit error correction codes
are considered, i.e. protecting logical qudits using phys-
ical qudits. However, sometimes the information rate
in terms of qubits per channel use is also an important
thing to study as, for example, when logical qubits want
to be encoded by means of qudits [52, 53] or when the
noise in a system composed by 𝑛 qubits experiences a
depolarizing channel of dimension equal to the Hilbert
space of the whole system, i.e. 𝑑 = 2𝑛. The last example
would refer to noise that is correlated, that is, noise that
cannot be seen as independent noises acting over each of
the qubits of the system (See section VI for further dis-
cussions). In this case, it is more convenient (in terms of
calculations) to redefine the superaddivity gain as 𝜁 (N) =
𝐶Q (N)/𝑄coh (N) for obtaining the same results as before.
Note for example that it is straightforward to see that
lim𝑑→∞ 𝜁 (Λ𝑑

𝑝) = (𝐶𝑑
Q (Λ𝑑

𝑝) log2 𝑑)/(𝑄𝑑
coh

(Λ𝑑
𝑝) log2 𝑑) = 1,

implying that the coherent information is additive. Un-
luckily, this redefinition of the gain poses some problems
since it diverges for the region where the coherent infor-
mation vanishes but the capacity is still strictly positive.
However, since Theorem 1 considers only the region of
positive coherent information and in Corollary 1 such
thing is true for the whole region, the same results are
obtained. Anyway, we still consider 𝜉 (N) to be the ap-
propriate way to define the superadditivity gain since it
is able to capture the non-additivity effects of coherent
information for the whole parameter region and, thus,
discussed such quantity in terms of qudits per channel
use.

V. RELATIONSHIP WITH OTHER
CAPACITIES

Generally speaking, quantum channels have many
other quantum capacities associated with the optimal
rate at which some information theoretic task can be
performed. Therefore, in this section we discuss the su-
peradditive gain for the classical and private capacities
of qudit depolarizing channels.

The classical capacity of a quantum channel, 𝐶𝜒 (N), is
defined as the asymptotically achievable rate of reliable
transmission of classical information through the noisy
channel [54, 55, 58]. The classical capacity of a quantum

channel is geven by the following regularized formula

𝐶𝜒 (N) = lim
𝑛→∞

1

𝑛
𝜒(N⊗𝑛), (18)

where 𝜒(N) is named the Holevo quantity [58] and it is
calculated as

𝜒(N) = sup
𝜌𝑋𝐴

𝐼 (𝑋; 𝐵)𝜌, (19)

where 𝜌𝑋𝐴 refer to pure classical-quantum states [58] and
𝐼 (𝐴; 𝐵)𝜌𝐴𝐵

= 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) − 𝑆(𝜌𝐴𝐵) is the quantum mu-
tual information [6]. The mutual information is evaluated
with the state (I𝑋 ⊗ N)(𝜌𝑋𝐴). For arbitrary channels,
the Holevo information is superadditive, implying that
the regularization in equation (18) is necessary [6, 58].
However, it is well known that the Holevo information of
qudit depolarizing channels is additive, implying that the
classical capacity of such families of channels is equal to
the Holevo quantity [38]. Therefore, the superadditivity
gain of the classical capacity vanishes for all depolarizing
probabilities.
The private capacity, 𝑃(N), referres to the maximum

achievable rate for private transmission of information
over a quantum channel with an asymptotically vanishing
error rate [4, 56, 58]. Such quantity can be evaluated as

𝑃(N) = lim
𝑛→∞

1

𝑛
𝑃1 (N⊗𝑛), (20)

where the one-shot private information is calculated as

𝑃1 (N) = sup
𝜌𝑈𝐴

𝐼 (𝑈; 𝐵)𝜌 − 𝐼 (𝑈; 𝐸), (21)

where 𝜌𝑈𝐴 refer to mixed classical-quantum states [58].
The mutual informations are evaluated for states (I𝑈 ⊗
N)(𝜌𝑈𝐴) and (I𝑈 ⊗ N 𝑐) (𝜌𝑈𝐴), respectively. Private ca-
pacity has also shown to be a superadditive quantity
[57, 58]. Importantly, the private capacity upper bounds
the unassisted quantum capacity of a quantum channel
[58–60], i.e.

𝑃(N) ≥ 𝐶Q (N), (22)

which also holds for the one-one shot capacities, i.e.
𝑃1 (N) ≥ 𝑄coh (N). The upper bound saturates for the
class of more capable channels (which includes less noisy
and degradable channels) [22].
Moreover, the no-cloning bound in equation (5) also

upper bounds the private capacity of qudit depolarizing
channels. We are unaware of a manuscript including this
results and, thus, we provide a proof for it.

Corollary 2. The no-cloning bound, 𝑄nc (Λ𝑑
𝑝) is an up-

per bound for the private quantum capacity of qudit de-
polarizing channels, i.e.

𝑃(N) ≤ 𝑄nc (Λ𝑑
𝑝) =

(
1 − 2𝑝

𝑑 + 1

𝑑

)
log2 𝑑. (23)
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Proof. Note that the 𝑑-dimensional depolarizing channel
is both degradable and antidegradable when 𝑝 = 𝑑

2(𝑑+1) .

Following the rationale in [30], we can invoke Smith and
Smolin’s technique of degradable extensions [36] to ob-
tain the upper bound given in the corollary by noting that
if the additive extension is degradable, then its coherent
information does also upper bound the private capacity
of the channel (Theorem 3 in [36]).

Similarly as done with the quantum channel capac-
ity, we will define the normalized private capacity as
𝑃𝑑 (N) = 𝑃(N)/log2 𝑑. Here, the operational meaning
of this quantity will be the number of private bits that
can be reliably sent per qubit channel use. Note that,
since having a higher dimensional system implies that
more classical information can be packed, by normaliz-
ing this quantity we can more fairly compare how many
extra private bits can be achieved due to superadditivity
effects when comparing different dimensional depolariz-
ing channels.

Using the no-cloning bound upper bound on the pri-
vate capacity, we extend the results of Theorem 1 and
Corollary 1 for the private capacity of qudit depolarizing
channels.

Corollary 3. The normalized private capacity superad-
ditivity gain of qudit depolarizing channels, 𝜉𝑃 (Λ𝑑

𝑝), in
units of private bits per two-dimensional channel use is
upper bounded by 𝜉nc (Λ𝑑

𝑝), which is a monotonically de-
creasing function with 𝑑 for any depolarizing probability,

𝑝, in the range 𝑝 ∈ (0, 𝑝𝑑𝑙0 ), where 𝑝
𝑑𝑙
0 is defined as in

Theorem 1 with 𝑑𝑙 an arbitrary positive integer higher
than 2. Therefore, the potential gain that can be ob-
tained from superadditive effects for the private capacity
decrease with the dimension of the system.

Moreover, the normalized private channel capacity of
the ∞-dimensional or bosonic depolarizing channel coin-
cides with its quantum capacity and is given by

𝑃𝑑 (Λ∞
𝑝 ) = 𝐶𝑑

Q (Λ∞
𝑝 ) = 1 − 2𝑝, (24)

with private bits per two-dimensional channel use units
for 𝑝 ∈ [0, 1/2] and 0 for 𝑝 ∈ [1/2, 1].

Proof. Since we are restricting the depolarizing proba-

bilities to the range 𝑝 ∈ (0, 𝑝𝑑𝑙0 ), we know that the su-

peraddivity gain of the quantum capacity, 𝜉nc (Λ𝑑
𝑝), is a

monotonically decreasing function with 𝑑 from Theorem
1. Therefore, by taking into account the following chain
of inequalities:

𝜉nc (Λ𝑑
𝑝) = 𝑄𝑑

nc (Λ𝑑
𝑝) −𝑄𝑑

coh (Λ
𝑑
𝑝) ≥ 𝑃𝑑 (Λ𝑑

𝑝) −𝑄coh (Λ𝑑
𝑝)

≥ 𝑃𝑑 (Λ𝑑
𝑝) − 𝑃1 (Λ𝑑

𝑝) = 𝜉𝑃 (Λ𝑑
𝑝),

(25)

and, therefore, the upper bound for the superadditivity
gain of the quantum channel capacity upper bounds the
superadditivity gain of the private capacity of qudit de-
polarizing channels too. Consequently, the possible room

for increasing the achievable rate in a task of private clas-
sical communication over a qudit depolarizing channel
decrases as the dimension of the system increases.
The second part of the corollary is straightforward

from Corollary 1 due to the fact that

lim
𝑑→∞

𝜉nc (Λ𝑑
𝑝) = 0, (26)

thus, 𝜉𝑃 (Λ∞
𝑝 ) = 0. This implies that 𝑃𝑑 (Λ∞

𝑝 ) =

lim𝑑→∞𝑄nc (Λ∞
𝑝 ) = 1 − 2𝑝, for 𝑝 ∈ [0, 1/2]. The com-

plementary depolarizing parameter region is trivial from
the fact that the channel is antidegradable and, thus, the
private capacity vanishes.

Note that the result imlying that the quantum channel
capacity and the private capacity of the qudit depolariz-
ing channels coincide when the dimension of the system
is let to grow indefinitely is an interesting result since, at
the time of writing, only the class of more capable (which
includes the class of degradable channels) quantum chan-
nels present such equality [22, 58, 61], while depolarizing
channels are not more capable.

VI. IMPLICATIONS ON QUANTUM ERROR
CORRECTION WITH CORRELATED

DEPOLARIZING NOISE

As stated before, the 𝑑-dimensional depolarizing chan-
nel can be used to describe a noise map over a set of
𝑛 qubits for which the noise occurs in a very correlated
manner. In this sense, this channel will have a dimen-
sion that is equal to the whole qubit system, i.e. 𝑑 = 2𝑛.
In order to better understand the correlated noise model
descirbed by the 𝑑-dimensional depolarizing channel for
this systems, note that expression (3) can be rewritten
as [62]

Λ𝑑=2𝑛

𝑝 (𝜌) = (1 − 𝑝 + 𝑝

22𝑛
)𝜌 + 𝑝

22𝑛

∑︁
{ �̄� ,𝑘}\{0̄,0̄}

X �̄�Z𝑘𝜌Z𝑘X �̄� ,

(27)

where X �̄� = X 𝑗1⊗X 𝑗2⊗· · ·X 𝑗𝑛 and Z𝑘 = Z𝑘1⊗Z𝑘2⊗· · ·Z𝑘𝑛 ,
and X,Z are the bit and phase flip Pauli matrices, respec-
tively. By inspecting this expression, it can be observed
that the 𝑑-dimensional depolarizing channel refers to a
channel in which all the non-trivial Pauli elements of the
𝑛-fold Pauli group are applied in an equiprobable man-
ner. Therefore, this channel represents a channel in which
there exists a visible correlation in the Pauli errors that
each of the qubits of the system experiences. A visual
example of why this is said to be correlate can be seen in
the fact that for this channel an error or weight 𝑛 would
occur with a probability 𝑝/22𝑛 while in an independent
depolarizing channel, such probability would be gien by
the product of the probability of error of the channel, i.e.
(𝑝/4)𝑛. Thus, such even is much more infrequent for the
uncorrelated depolarizing channel.
Following this logic, consider for example a rotated

planar surface code with distance 𝑑 = 21 [63] or a length
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1000 quantum turbo code [64]. Those lengths refer to
quantum error correction codes with a good performance.
Note that for the dimensions of the whole system for
such codes will be 𝑑 = 2441 and 21000, respectively. Thus,
those codes have humongous dimensionality. Quantum
error correction codes are presumed to operate over a
large quantity of qubits, similarly as the examples pro-
vided, hence, if the noise experienced by those systems
ha a signifcant correlation, that is, similar to the depo-
larizing channel presented in Eq. (27); then there will no
be possible superadditive effects and the optimal com-
munication/correction rates will be achieved by random
stabilizer codes.

VII. CONCLUSION

In this article we have studied how the potential su-
peradditivity effects of the quantum capacity of the qudit
depolarizing channel relate to the dimension of the quan-
tum systems in consideration. We proved that whenever
the dimension of the 𝑑-dimensional depolarizig channel
increases, the potential gain in terms of qudits per chan-
nel use decreases. This is an important result since it im-
plies that for very high dimensional systems the channel
coherent information and the quantum channel capacity
will be very similar for the depolarizing channel, which
results in the fact that random block codes on the typical
subspace of the optimal input will be capacity achieving.
We also observed that when ∞-dimensional or bosonic
depolarizing channels are considered, the coherent infor-
mation results to be an additive quantity, making the
superadditivity gain to vanish for all depolarizing prob-
abilities. We proved that the private capacity of qudit
depolarizing channels behaves similarly in the sense that
its potential superadditivity gain decrases with the di-
mension of the system. Asymptotically, the ability of
sending private classical information over such family of
channels is also an additive quantity and, interestingly,
it coicides with the previously discussed quantum chan-
nel capacity. We also discussed the fact that since high
dimensional depolarizing channels exhibit additive coher-
ent information, the use of entangled input states is not
required for optimal quantum information protection for

such cases, significantly relaxing the resources required.
We have conducted this analysis of the reduction of

superadditivity effects for depolarizing channels, but we
consider that this type of arguments can be used in order
to study how superadditivity behaves in high dimensions
for other quantum channels. Similar proofs for other
general qudit channels could be potentially obtained by
squeezing upper bounds for their capacities with their
coherent informations. Also, it is noteworthy to state
that the Clifford twirl of a general 𝑑-dimensional chan-
nel results in a qudit depolarizing channel [42], implying
that since its capacity lower bounds the capacity of the
original channel, the results obtained here may be some-
how extended. This way it could be concluded if the
gain in qudits per channel use decreases with respect to
the dimension for every quantum channel that admits a
seamless extension to 𝑑-dimensions, implying that seek-
ing such effects should be restricted for low dimensional
quantum channels. Additionally, the behaviour of other
channel capacities such as the Local Operations and Clas-
sical Communications (LOCC)-assisted quantum capac-
ity [58, 59], 𝑄↔, or the secret-key agreement capacity
(LOCC-assisted private capacity) [58, 59], 𝑃↔, can also
be studied for the family of depolarizing channels and
for general maps too. These thoughts are conjectures
and are deemed as future work.
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Garcia-Fŕıas, J., Rodŕıguez Fonollosa, J. & Crespo, P.
M. Multiqubit time-varying quantum channels for NISQ-
era superconducting quantum processors. Phys. Rev. Re-
search 5, 033055 (2023).

[26] Leditzky, F., Leung, D., Siddhu, V., Smith, G. & Smolin,
J. A. The platypus of the quantum channel zoo. 2022
IEEE International Symposium on Information Theory
(ISIT) 2433-2438 (2022).

[27] Chessa, S. & Giovannetti, V. Quantum capacity analy-
sis of multi-level amplitude damping channels. Commun.
Phys. 4, 22 (2021).

[28] Chessa, S. & Giovannetti, V. Resonant multilevel ampli-
tude damping channels. Quantum 7, 902 (2023).

[29] Etxezarreta Martinez, J., Fuentes, P., Crespo, P. M. &
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