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Abstract.

Artificial Intelligence (AI), a discipline with decades of history, is living
its golden era due to striking developments that solve problems that were
unthinkable just a few years ago, like generative models of text, images
and video. The broad range of AI applications has also arrived to Physics,
providing solutions to bottleneck situations, e.g., numerical methods that
could not solve certain problems or took an extremely long time, opti-
mization of quantum experimentation, or qubit control. Besides, Quantum
Computing has become extremely popular for speeding up AI calculations,
especially in the case of data-driven AI, i.e., Machine Learning (ML).

The term Quantum ML is already known and deals with learning in quan-
tum computers or quantum annealers, quantum versions of classical ML
models and different learning approaches for quantum measurement and
control. Quantum AI (QAI) tries to take a step forward in order to come up
with disruptive concepts, such as, human-quantum-computer interfaces,
sentiment analysis in quantum computers or explainability of quantum
computing calculations, to name a few.

This special session includes five high-quality papers on relevant topics,
like quantum reinforcement learning, parallelization of quantum calcula-
tions, quantum feature selection and quantum vector quantization, thus
capturing the richness and variability of approaches within QAI.

1 Introduction

1.1 Framework

Artificial Intelligence (AI) in general, and Machine Learning (ML) in particular,
have shown their ability for successfully modeling a wide range of problems
belonging to very different fields [1, 2, 3], not only at an academic level, but
also reaching the commercial level. Quantum Computing (QC) has also become
very popular [4], especially in the last few years, when the promise of a quantum
advantage seems closer than ever, with the first paper claiming to achieve this
quantum advantage in a very specific problem [5] and others studying quantum
advantage from a more pragmatical point of view [6].
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The elementary unit of QC is the quantum bit (qubit), a quantum general-
ization of the classical bit. Akin to the classical bit, a qubit also has two states,
|0〉 and |1〉. However, the qubit generalizes its classical counterpart because it
allows the superposition of the states |0〉 and |1〉, i.e., |Ψ〉 = α |0〉+ β |1〉, where
α and β are complex coefficients whose meaning is related to the probabilities of
getting one of the two pure states after a quantum measurement; in particular,
the probability of |0〉 is |α|2 and the probability of |1〉 is |β|2, with the restriction
|α|2 + |β|2 = 1.

Both fields, QC and ML have lately converged towards a new discipline,
Quantum Machine Learning (QML) [7], that brings together concepts from both
fields to provide enhanced solutions, either improving ML algorithms, quantum
experiments, or both. The basic hypothesis of this special session is that QML
can be generalized by Quantum AI (QAI), akin to AI generalizing ML.

1.2 Quantum approaches for Artificial Intelligence

Quantum techniques have been successfully used to improve different charac-
teristics of learning in the last decade; the most immediate benefit comes from
speed-up [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].However, this is not the
only aspect of learning the can be benefited. Quantum approaches provide alter-
native representations of data sets, thus leading to different, potentially better,
solutions. This includes quantum clustering [16, 17, 21], different quantum ver-
sions of classical AI models [11, 22, 23, 24], or quantum Reinforcement Learning
(RL) [20, 25].

With respect to quantum annealers [9], the fact of increasing the number
of qubits allows more complex calculations [26]. The use of ML to improve
key steps of the computational process in quantum computers and quantum
annealers have also been shown recently [27, 28], and it is an active field of
research with the goal of circumventing adiabatic evolution efficiently.

1.3 Artificial Intelligence in quantum experimental setups

The pioneer applications of AI to the optimization of quantum experimentation
dealt with circuit optimization [29, 30], quantum metrology [31], and RL-based
control [32]. Related to RL-based control, there have been recent developments
to carry it out in the framework of stream learning in order to extract knowledge
from a continuously measured quantum system [33].In quantum environments,
it is crucial to come up with a strategy to get information from quantum states
without collapsing superposition states. Active Learning has already been used
in binary and classification tasks, being able to capture most of the information
of quantum states with a limited number of weak measures [34, 35].

Although most of the proposals mentioned so far involve ML, QAI, as a
generalization of QML is making interesting progresses, for instance in quantum
generalizations of Human-Computer Interactions, a very mature field in the clas-
sical realm [36]. Quantum Brain Networks integrate neurotechnology, AI and
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QC in order to develop an enhanced connectivity between the human brain and
quantum computers [37, 38].

The rest of the tutorial is devoted to those aspects of the QAI that are faced
in the papers of the special session, namely, optimization of quantum resources
in section 2, quantum vector quantization in section 3, and quantum RL in
section 4. In particular, we briefly describe the foundations of each topic before
introducing the corresponding papers. We end up the paper with compiling
conclusions in section 5.

2 Optimization of quantum resources

Resource optimization is of paramount relevance in any kind of computation.
This importance is even higher in the case of the quantum realm due to the
limitations of existing hardware and the specific characteristics of quantum mea-
surement and QC. Two papers of this special session deal with optimization of
quantum resources from different perspectives: quantum feature selection [39]
and quantum forking [40].

2.1 Quantum feature selection

Feature selection (FS) is the generic term for those ML techniques whose goal
is to select the most relevant characteristics of a given problem [41],.FS can
maintain the performance of complicated models with much simpler versions, in-
volving less coefficients. This has important consequences in terms of enhanced
generalization capabilities, better interpretability and, of course, a lower amount
of computational resources. Very recently, some works have proposed quantum
versions for FS to be implemented in quantum environments [42, 43, 44]. Vari-
ance estimation is one the usual ways to build FS methods. In the ESANN 2023
special session on QAI, Poggiali et al. [39], focus on how quantum FS can be
benefited from leveraging the variance; the authors propose a Hybrid Quantum
Feature Selection algorithm, tested in two synthetic datasets. The proposed
algorithm is based on the estimation of the variance of superposition states.
The authors conclude that if the number of qubits is adequate, the algorithm
successfully detects and eliminates features that are not informative.

2.2 Quantum forking

Besides an unnecessarily high number of features, another issue that affects
quantum resources is the need of preparing many times the same initial quantum
state in order to perform multiple tasks. AI usually requires huge datasets, and
hence, encoding quantum states can be costly. Moreover, as quantum states
cannot be copied nor reused once measured, alternative approaches are needed
to optimize state preparation; one of the most promising approaches is the so-
called quantum forking (QF) [45]; it follows a similar reasoning of forking in
computer operating systems, in which the idea is to create a child process from
a parent one, so that the child process can evolve independently; in QF, unitary
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processes in superposition are split, being drastically reduced the number of
queries to a quantum random-access memory. In this special session, Berti
comes up with a logarithmic variant to QF that performs state preparation for
an initial quantum state only once for multiple tasks [40]; the proposal makes
use of a few additional control qubits to compute an exponential number of tasks
over the initial quantum state. The proposed technique is especially useful when
the number of forks and qubits encoding the initial quantum state is high.

3 Quantum approaches for vector quantization

3.1 Standard vector quantization

Vector quantization (VQ) is one of the most prominent paradigms in ML and
data compression. The aim is to represent vectorial data X ⊂ Rn by a smaller
set W ⊂ Rn of prototype vectors wk such that |W| � |W| is valid for their
cardinalities. Depending on the task, the prototypes are used for pure data
representation or clustering in unsupervised learning, whereas in the supervised
setting, one has to deal with classification or regression learning. Thereby, the
data are represented by a prototype according to the nearest prototype principle
(NPC) realized as a winner-takes-all (WTA) rule

s (x) = argminj=1,...,|W| (d (x,wj))

where d is a dissimilarity measure frequently chosen as the (squared) Euclidean
distance. The receptive fields R (wj) = {x ∈ X |j = s (x)} form a partition of
the data space. For classification tasks, each prototype is responsible for a
class c (wj) ∈ C = {1, . . . , C} such that a data sample x is classified accord-
ing to c (x) = c

(
ws(x)

)
using the WTA rule [46].Unsupervised learning of the

prototypes follows several schemes: The most prominent is standard k-means
or its improved variants like k-means++ or neural gas [47, 48, 49], which use
stochastic gradient descent learning (SGDL) or expectation-maximization (EM)
optimization. Prototype-based classification learning is based on the famous
learning vector quantization (LVQ) approaches originally suggested by Kohonen
[50]. Today it is based on strong mathematical foundations known as generalized
LVQ (GLVQ) usually trained by SGDL [51]. NPC guaranties interpretability of
vector quantizers for both unsupervised and supervised learning [46]. Further,
if the squared Euclidean distance is used for training together with SGDL, pro-
totype adaptations are by simple vector shifts in the data space. In (G)LVQ
training, those vector shifts realize an attraction in case of correct classification
learning and a repelling if incorrect classification occurs. This strategy is known
as attraction-repulsing-scheme (ARS).

Another promising option for vector quantization, particularly in the view of
quantum machine learning, are Hopfield-networks (HN) or Boltzmann machines
which show relations to statistical physics and quantum systems [52, 53]. HN
can be interpreted as associative memories [54] and can be used also for vector
quantization [55].
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3.2 Quantum vector quantization

Quantum vector quantization (QVQ) requires an appropriate encoding of the
data usually realized as amplitude or basis encoding, both being used in gate-
based QC [56] and adiabatic QC [57]. Coding of the data can be interpreted as
quantum feature mapping of the data into the Hilbert space defined by the Bloch-
sphere [58, 59, 60, 61, 62]. Hence, the WTA represents the distance in the Bloch
sphere, which can be obtained via the SWAP test together with the Hadamard
test [63]. The minimum search in the WTA depends on the minimum search ac-
cording to the list of all available dissimilarity values for a current system state.
A quantum algorithm to find a minimum is the algorithm provided by Dürr and
Høyer [64, 65] which is, in fact, an extension of the often referenced Grover search
[66]. However,, it should be emphasized that due to the above-mentioned quan-
tum feature mapping, the interpretation of the QVQ algorithm with respect to
the original data space maybe limited whereas within the Bloch-sphere (Hilbert
space) the prototype principle and interpretation paradigms remain true [58, 60].

Unsupervised VQ can be seen as a special quadratic unconstrained binary
optimization (QUBO) problem,.A QVQ approach is discussed by Engelsberger
and Villmann in this special session [67]. Further, binary variables b can be
transformed into spin variables s and vice versa by the relation b = 1+s

2 mak-
ing the Ising model mathematically equivalent to QUBO [68] as well as to the
discrete HN [69], which can be applied also for unsupervised VQ.

A supervised QVQ seems to be more challenging. For the GLVQ-approach,
the ARS finds difficulties according to the repelling vector shift for prototype
learning in case of incorrect classification [60, 62, 70]. A promising alternative
could be to adapt HN for classification, as proposed in [71, 72], and transfer
these strategies to QC. HN optimization based on adiabatic QC was already
proposed in [73].

4 Quantum Reinforcement Learning

4.1 Theoretical foundations

Quantum RL is the natural quantization of standard RL protocols. In the latter,
a system, called agent, interacts with its outer world, the environment, in order
to obtain information from it, and subsequently adapt to it, to enhance its
performance. The aim of the agent is to achieve some goal, possibly in the mid
or long term. Therefore, several iterations of the agent-environment interaction
are usually needed, and in each of them, depending on the outcome, rewards
or punishments take place, to make the agent either reinforce its behaviour, or
modify it.

In the case of quantum RL, either the agent, or both the agent and the
environment, are quantum systems, such that properties like entanglement and
superposition will play a role. In the literature on this topic, different approaches
have been pursued, such as employing Grover search algorithm to accelerate the
information processing from the agent [14], or having both a quantum agent and
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environment in such a way that the agent aims at learning, e.g., an unknown
quantum state [20, 74, 75, 76, 77, 78, 79]

4.2 Case study: Autonomous Driving

In this special session, Hickmann et al. study the possibilities and advantages of
quantum enhanced Q-learning with applications to a lane change manoeuvre [80].
They analyze multiple simple RL environments by means of variational quantum
circuits. The outcomes were similar to or sometimes even an enhanced version
with respect to those of a simple constrained classical agent. They have also
achieved promising behavior on the more difficult lane change manoeuvre task,
dealing with an environment with an observation vector size twice larger than
usual. In the case of the Frozen Lake environment they obtained evidence of
possible quantum speedups in convergence rate.

5 Conclusions

This tutorial has presented the framework of QAI, describing the main successful
approaches considered in recent literature. Special emphasis has been put on the
specific topics faced in the papers accepted in the ESANN 2023 special session
on QAI, namely, optimization of quantum resources, (quantum feature selection
and logarithmic quantum forking), quantum vector quantization and quantum
RL. It is remarkable the high-quality of all accepted papers as well as those
submitted to the special session that were not eventually published due to the
low acceptance ratio.

We are enthusiastic about the future of QAI, en emergent field with multiple
avenues to enhance the research in the frontiers of AI and QC, and with actual
possibilities of producing useful results in many real-life applications in the next
few years. Therefore, we encourage the communities of AI and QC to collaborate
with each other in this fascinating field of knowledge.
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